Cualquier recta r que puedas dibujar sobre una hoja de papel puede ser determinada analíticamente por medio de punto A que forme parte de dicha recta y una dirección que se puede expresar mediante un vector no nulo .
Definición de una recta por medio de un punto y un vector
Como puedes observar en la figura r se trata de una recta que pasa por el punto A y cuya dirección viene dada por el vector .
El vector encargado de determinar la dirección de la recta recibe el nombre de vector director y como podrás imaginar este no es único ya que cualquier vector paralelo a este nos sirve también para determinar la dirección de la recta. De esta forma, si es un vector director de la recta r, también lo serán cualquier múltiplo de ().
Multiplicación de un número real por un vector cualquiera
Observa en la figura como al multiplicar el vector por un número real este no cambia de dirección, aunque si lo puede hacer en módulo (tamaño) o en sentido (si el número es negativo). De forma básica para definir una recta es necesaria la dirección de un vector (no su módulo o sentido). Por tanto, si utilizamos el vector para definir una recta en realidad podemos utilizar cualquier vector que cumpla que , ya que todos tienen la misma dirección.
La ecuación vectorial que permite determinar cada punto (x,y) de cualquier recta r se obtiene por medio de la siguiente expresión:
Donde:
- x e y son las coordenadas de cualquier punto P(x,y) de la recta.
- a1 y a2 son las coordenadas de un punto conocido de la recta A(a1,a2).
- v1 y v2 son las componentes de un vector director de r.
- λ es un valor real que determina cada coordenada P(x,y) dependiendo del valor que se le asigne.