Representación de Vectores
Representación Gráfica
Gráficamente, un vector se representa como una flecha ubicada en un eje de coordenadas. En esta flecha podemos identificar cada uno de los elementos que lo conforman y que estudiamos en el apartado anterior, además de algunos más.
- Tienen un punto desde el que nace la flecha llamado origen o punto de aplicación.
- De igual forma, tienen otro punto donde termina la flecha llamado extremo.
- La recta sobre la que "descansan" los puntos de extremo y origen se denomina dirección o recta soporte.
- La distancia entre el punto origen y extremo corresponde con su módulo. A mayor distancia entre ellos, el módulo será mayor.
- La punta de la flecha determina su sentido, dentro de los dos posibles que se podría dibujar siguiendo su dirección, es decir hacia un lado de la recta o hacia el otro.
Representación Analítica
Todo vector se puede expresar como la suma de otros vectores que sirven de patrón o referencia. Estos vectores reciben el nombre de vectores unitarios ya que su módulo vale 1 (módulo unitario). En concreto se emplean:
o es un vector unitario en la dirección del eje X o es un vector unitario en la dirección del eje Y
Como se muestra en el ejemplo anterior, hemos obtenido una forma de representar analíticamente un vector a partir de su gráfica. A continuación, puedes encontrar otras formas de representación posibles. De esta forma, un vector
|
donde
|
|
|
||
|
Módulo de un Vector
Las coordenadas cartesianas (ax y ay) son muy importantes, ya que a partir de ellas es posible calcular el módulo y dirección del vector. Este último, teniendo en cuenta el ángulo
Módulo y coordenadas de un vector
Si aplicamos el teorema de Pitágoras, podemos deducir que
Además, si aplicamos las definiciones del seno y del coseno, podemos obtener otra forma de calcular las componentes cartesianas.
Y ahora... ¡Ponte a prueba!
Apartados relacionados
El apartado no se encuentra disponible en otros niveles educativos.