Altura de torre con punto de observación bajo la misma

Enunciado

dificultad
Dificultad alta para los ejercicios de nivel avanzado

El bueno de Mario está intentando calcular la altura de la torre del castillo para poder saltar a ella. ¿Podrías echarle una mano a partir de las anotaciones que ha hecho?

Triángulos para cálculo de altura

Solución

Consideraciones previas

Se trata de resolver varios triángulos aplicando las técnicas señaladas en el apartado teórico. De todas ellas, nosotros lo haremos usando principalmente las siguientes:

Resolución

Primer triángulo para resolver

Primer triángulo para resolver

Observa que, de partida, sólo conocemos un ángulo y un lado del triángulo representado. No obstante, observa que α es el fragmento que resta a los ángulos verde y naranja para completar los 180º. Es decir α=180-25.2-39.23=115.57º. Por otro lado, como los 3 ángulos del triángulo deben sumar 180º, nos queda β=180-115.57-36.54=27.89º.

Aplicando el teorema del seno podemos calcular el lado MP:

sin36.54MP=sin27.8928.58MP=28.58·sin36.54sin27.89=36.37 m

Ahora vamos con el segundo triángulo, para calcular la altura de la torre.

Segundo y tercer triángulo para resolver

Triángulos segundo y tercero para resolver

Observa que necesitamos conocer h en el triángulo de la figura. A priori solo tenemos como datos el ángulo verde, y el lado MP. Sin embargo una observación un poco más detinida del triángulo adyacente, nos lleva a darnos cuenta que el ángulo α' es lo que falta al ángulo γ para completar los 180º. Conocer γ es inmediato, ya que pertenece a un triángulo rectángulo. Como los 3 ángulos del mismo deben sumar 180º tenemos que γ=180-90-39.23=50.77. Por tanto α'=180-50.77º=129.23º. Aunque no es necesario conocerla para los cálculos que vamos a hacer, ten presente también que β'=180-129.23-25.2=25.57º.

Aplicando el teorema del seno obtenemos h:

sin25.2h=sin129.2328.58h=28.58·sin25.2sin129.23=15.7m

Autor artículo
Sobre el autor
José Luis Fernández Yagües es ingeniero de telecomunicaciones, profesor experimentado y curioso por naturaleza. Dedica su tiempo a ayudar a la gente a comprender la física, las matemáticas y el desarrollo web. Ama el queso y el sonido del mar.

Fórmulas

Estas son las principales fórmulas que debes conocer para resolver este ejercicio. Si no tienes claro su significado, te recomendamos que consultes la teoría de los apartados relacionados. Además, en ellos encontrarás, bajo la pestaña Fórmulas, los códigos que te permitirán integrar estas fórmulas en programas externos como por ejemplo Word o Mathematica.

Fórmulas
Apartados relacionados
asin A^=bsin B^=csin C^

Y ahora... consulta más ejercicios relacionados o la teoría asociada si te quedaron dudas.

Loading...