Enunciado

dificultad
Dificultad intermedia para los ejercicios de nivel experto
  1. Dada la función f(x) continua en [1, 5] y sabiendo que f(1)=-4 y f(5)≥0, deducir si la función definida como g(x)=f(x)+2 se anula para algún valor x∈[1, 5]

  2. Sea ahora la función y=f(x) continua y tal que f(-1)=-3 y f(3) mayor que cero o positiva, por lo que por el teorema de Bolzano tiene una raiz en el intervalo (-1 3).  ¿Se puede asegurar lo mismo de la función g(x)=f(x)+4? ¿Y de la función h(x)=f(x)+2?

Solución

Consideraciones previas

Siempre que nos pregunten por raíces de una función continua podemos utilizar el teorema de Bolzano. A partir de los datos que tenemos de f(x), y de su relación con las funciones que queremos estudiar, tenemos que verificar si también se cumplen las hipótesis del teorema.

Resolución

1.

Estudiemos la función y=f(x). Lo primero es saber si es continua en el intervalo en el que estamos y claramente lo es porque es suma de dos funciones continuas y=f(x) y h(x)=2, por lo que podrremos aplicar el teorema de Bolzano. Ahora veamos qué valores toma en los extremos del intervalo sobre el que nos han preguntado:

g(1)=f(1) +2=-4+2=-2<0g(5)=f(5)+2 =0+2=2>0

Por lo tanto podemos asegurar por el teorema de Bolzano que en dicho intervalo toma el valor de cero alguna vez puesto que cambia de signo en sus extremos.

2.

Estudiamos primero la función y=g(x). Efectivamente, y=g(x)= f(x) +4 es continua por ser suma de funciones continuas. Veamos si se cumple la segunda hipótesis del teorema en el intervalo (-1 3):

g(-1)=f(-1)+4=-3+4=1>0g(3)=f(3)+4>0 ya que f(3)>0

Vemos entonces que la función y=g(x) no ha cambiado de signo, por lo que no podemos asegurar que tenga una raíz (lo cual no quiere decir que no pudiera tenerla, sino que no podemos asegurarlo a partir del teorema de Bolzano).

Estudiamos ahora la función y=h(x). Igual que en el caso anterior, la función es continua por ser suma de funciones continuas  Veamos si cambia de signo en los extremos:

h(-1)=f(-1)+2=-3+2=-1<0h(3)=f(3)+2>0 por ser f(3)>0 

Vemos que ha cambiado de signo y por lo tanto podemos asegurar que la función y=h(x) sí tiene al menos una raíz en el intervalo (-1, 3).

Autor artículo
Sobre el autor
José Luis Fernández Yagües es ingeniero de telecomunicaciones, profesor experimentado y curioso por naturaleza. Dedica su tiempo a ayudar a la gente a comprender la física, las matemáticas y el desarrollo web. Ama el queso y el sonido del mar.

No hemos encontrado ninguna fórmula destacable en este ejercicio.


Y ahora... consulta más ejercicios relacionados o la teoría asociada si te quedaron dudas.